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The paper contains estimates for the entropy numbers of classes of functions with
conditions on the mixed derivative (difference), in the uniform and integral metrics.
As an application, the new estimates of the Gaussian measure of a small ball are
obtained. � 1998 Academic Press

INTRODUCTION

For classes of periodic functions of d real variables we obtain estimates
of =-entropy in the uniform and integral metrics. These results are compared
with the =-entropy estimates in the metric of a special Besov space which
appears naturally in many approximation problems. Combined with recent
results of Kuelbs and Li, these estimates yield new estimates of the
Gaussian measure of a small ball.

Let us recall the definitions (cf. [29]). Let K be a compact set in the
Banach space X. The =-entropy H=(K; X ) (or simply H(K, =)) is the logarithm
to the base two of the number of points in the minimal =-net. We use also
the inverse quantities, the so-called entropy numbers, given by

=m(K; X )=inf {=: K/ .
2m

j=1

(xj+=BX )= .

The infimum is taken over all = such that K can be covered by 2m balls =BX

of radius =.
The main properties of the =-entropy or entropy numbers can be found,

for example, in [29, 19]. We give some of them below.
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Let Rd be the d-dimensional Euclidean space, Qd=[0, 1)d the unit cube
and r=(r1 , ..., rd) a vector with nonzero coordinates. For the sake of
convenience we suppose that the coordinates are ordered as follows
0<r1=r2= } } } =r&<r&+1� } } } �rd .

Let W r
p be the class of periodic functions f defined on Qd such that the

norm of the mixed derivative of order r is bounded, that is, & f (r1 , ..., rd )&p�1,
and �1

0 f (x1 , ..., xd) dxj=0, for j=1, ..., d. For rj fractional the derivative is
understood in the Weyl sense. A function of the class W r

p has the following
integral representation

f (x)=|
Qd

,(x&t) Kr(t) d t,

where &,&p�1 and Kr(t) is the Bernoulli kernel

Kr(t)= `
d

j=1

Krj
(tj ), Krj

(tj )= :
�

k=1

cos(2?(ktj+rj ))
krj

.

The class H r
p is the set of functions f such that �1

0 f (x1 , ..., xd) dxj=0
for j=1, ..., d and for all subsets [ j1 , ..., jk]/[1, ..., d] we have

&2l, ..., l
hj1

, ...hjk
f &p�>js

|hjs
| rjs where the mixed difference of integer order l>rd

is taken with the step hjs
in the variable xjs

.
Such classes are really multidimensional by methodology as well as by

results. The first publications on this topic are due to K. Babenko [1, 2].
Many interesting results have been obtained since then but many important
problems are still open. A detailed history can be found in the book [26].

This paper gives estimates from above for the entropy numbers on the
classes W r

p and H r
p in the uniform metric C(Qd ). These estimates are

apparently exact since the gap between these estimates and those from
below is of order - log m, and in the two-dimensional case the exactness
has been already proved (see the work by M. Talagrand [24], and also
[28]). The order of entropy numbers in the integral metric Lp(Qd ),
1<p<�, is found for all r for which the embedding theorems hold. Only
estimates from above are proved in the paper. Estimates from below and
also estimates from above for r>1 have been known. In the Appendix we
answer a question of Kuelbs and Li on direct estimation of certain entropy
numbers.

We write am<<bm if there exists an absolute constant C such that
am�Cbm , and am &bm if simultaneously am<<bm and bm<<am .

The plan of the paper is as follows. In Section 1 we formulate the main
results, their applications are discussed in Section 2; and proofs are given
in Section 3.
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1. RESULTS

Our proofs are based mainly on estimates for the entropy numbers in
finite-dimensional spaces. Surprisingly some of these estimates that are too
crude for the classical Sobolev spaces are sufficient for the classes of
functions considered here (at least in the two-dimensional case).

We start with the class W r
p .

Theorem 1.1. Let r1>max(1�p, 1�2), and 1< p<�. Then

\log&&1 m
m +

r1

<<=m(W r
p ; L�)<<\log&&1 m

m +
r1

log1�2 m.

The estimate from above was proved in [5] by a method different from
that presented here. Unfortunately, this paper is almost inaccessible (as are some
other volumes of Proceedings of Yaroslavl University, edited by Y. Brudnyi).
Less precise estimates are given in [28]. The following stronger estimate
from below is known

\log&&1 m
m +

r1

<<=m(W r
� ; L1).

It was proved by the author [5] for r1>1�2 (see also [25]), and then by
B. Kashin and V. Temlyakov [12] for every r1>0 by a more complicated
method.

Let us proceed to the classes H r
p .

Theorem 1.2. Let 1< p<�, and r1>max(1�2, 1�p). Then

\log&&1 m
m +

r1

log(&&1)�2 m<<=m(H r
p ; L�)<<\log&&1 m

m +
r1

log&�2 m.

The estimate from above was proved in [5] for r1>1. The estimate from
below was proved in [27]. Another proof was given in [5]. Actually, a
stronger estimate from below for r1>0 is proved in [27] (see also [25]),
namely,

\log&&1 m
m +

r1

log(&&1)�2 m<<=m(H r
� ; L1).

Remark 1.3. One notes the gap of - log m between the estimates from
above and below. It seems that the estimates for the space L� which have
to be improved are those from below. This has proved to be so in the
two-dimensional case [24, 28].
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For the case of the integral metric the following exact order of entropy
numbers is proved for every r for which the embedding theorems hold.

Theorem 1.4. Let r1>1�p&1�q, and 1<p�q<�. Then

=m(W r
p ; Lq)&\log&&1 m

m +
r1

.

Theorem 1.5. Let r1>1�p&1�q, and 1< p�q<�. Then

=m(H r
p ; Lq)&\log&&1 m

m +
r1

log(&&1)�2 m.

These results were proved for r1>1 by methods different than those
employed here in [5, 27] (see also [25]), independently. The new result
here is the estimate from above for r1>1�p&1�q.

In the one-dimensional case approximation in the C-metric and the
stronger metric of the Besov space B0

�, 1 is essentially the same which
allows us to often use the B0

�, 1 -metrics instead of the C-metrics. Attempts
to extend this idea to the multidimensional case can lead to inexact results.
We demonstrate this by giving estimates for the entropy numbers in the
norm of the Besov space proved in [5]. The estimates of the entropy
numbers in the wide range of Besov space metrics were proved in [27].
These results are interesting because, in contrast to the one-dimensional
case, the behavior of entropy numbers is different, and they also imply
estimates of Gaussian measures.

We use the following definition of the norm in the Besov space B0
�, 1

(cf. [26]),

& f &B0
�, 1

= :
k # Z

d
+

&_k V f &� ,

where _k(x)=>d
j=1 (V2kj+1 (xj )&V2kj (xj)) is the product of the one-dimen-

sional de la Valle� e Poussin kernel.

Theorem 1.6. Let r1>1�2. Then

=m(W r
2; B0

�, 1)&\log&&1 m
m +

r1

log(&&1)�2 m.

Theorem 1.7. Let r1>1�2. Then

=m(H r
2 ; B0

�, 1)&\log&&1 m
m +

r1

log&&1 m.
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2. APPLICATIONS

In this section relations between =-entropy and the Gaussian measure,
established by Kuelbs and Li, are used to obtain new estimates for the
Gaussian measure.

Let us recall some definitions (see, for example, [14]). Consider the
operator Ur , r1>1�2 from L2(Qd ) to C(Qd ) given by Ur f= f V Kr . If [gk]
denotes an independent sequence of standard gaussian random variables
then for any given complete orthonormal system [ fk] of L2(Qd ) the series
�k gkUr fk converges almost surely in C(Qd ) with the distribution
function +. So, the operator Ur defines the Gaussian measure + on C(Qd)
which is the image under Ur of the canonical cylindrical Gaussian measure
on L2(Qd ). Let us mention that the space H+ (the reproducing kernel of +)
is the image of L2(Qd ) under Ur , and its unit ball B+ is the image under
Ur of the unit ball of L2(Qd ).

It is known that the injection H+ � C(Qd ) is compact. Let us set

,(=)=&log +(x: &x&C�=).

Theorem [15]. The following estimates hold

,(2=)&log 2�H \B+ ,
- 2 =

- ,(=)+�2,(=).

Example 1. Let H+=W r
2 be the Hilbert space of functions periodic on

each variable with �1
0 f (x1 , ..., xd) dxj=0, for j=1, ..., d endowed with the

norm & f &H+
=[�Qd | f (r)(x)| 2 dx]1�2.

Let r1>1�2. Then

,(=)>>
log(&&1)(2r1 �(2r1&1)) (1�=)

=2�(2r1&1) .

This is a direct corollary of the second estimate in the Kuelbs�Li Theorem
and estimates from below of Theorem 1.1.

In the case r=(1, 1, ..., 1) R. Bass [4] proved the estimate

,(=)<<
log3(d&1) 1�=

=2 .

The following statement strengthens this estimate.
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For each $>0 there exists a constant C$ depending only on $ such that

log2d&2 1�=
=2 <<,(=)�C$

log2d&1+$ 1�=
=2 .

Proof. The estimate from below is contained in the previous state-
ment. Let us prove the estimate from above. The estimate of =-entropy in
Theorem 1.1 and the first inequality in the Kuelbs�Li Theorem gives

,(2=)�
logd&1�2 (- ,(=)�=) ,(=)

=
.

Using Bass' estimate for ,(=) we have

,(2=)�
log(5�2) d&2 (1�=)

=2 .

Now we can estimate ,(2=) again using this improved estimate instead of
that of Bass. A sufficient number of iterations completes the proof. K

Example 2. The Hilbert space H+ is the space of periodic functions W r
2

with & f &H+
=[�Qd | f (r)(x)|2 dx]1�2 and Gaussian measure + considered

on the Besov space B0
�, 1 . Of course, the distribution function + and the

function , correspond to the metric B0
�, 1 .

If r1>1�2 then

,(=)&
log(&&1)((2r1+1)�(2r1&1)) (1�=)

=2�(2r1&1) .

This follows from Theorem 1.6 and the Kuelbs�Li result.

3. PROOFS

The proofs of the estimates from above are based on the following
lemmas, some of them are well known, others are proved here.

Let & &X denote Rn endowed with the norm of Banach space X, and let
X* be its dual space. Let Bn and Sn&1 be the Euclidean unit ball and unit
sphere. The average of & &X on Sn&1 is denoted by MX , i.e.,

MX=|
Sn&1

&x& d_(x),

where _ is the normalized rotation invariant measure on Sn&1.
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Lemma 3.1 ([13], see also [20]). 2&m�n�=m(BX ; X )�2(2m�n&1)&1.

The following lemma is Sudakov's classical result [23].

Lemma 3.2. There exists an absolute constant C, such that

H=(BX ; Rn)�Cn \MX*

= +
2

.

A dual version of this fact was first proved in [21]; a different simple
proof was given by A. Pajor and M. Talagrand [10].

Lemma 3.3. There exists an absolute constant C, such that

H=(Bn ; X )�Cn \MX

= +
2

, =�MX

H=(Bn ; X )�Cn log
MX

=
, =�MX .

Observe that the second estimate can be easily derived from the first one
and Lemma 3.1. Indeed

H=(Bn; X )�HMX
(Bn; X )+H=�MX

(BX ; X )

and we have only to use the preceding estimates.
The estimates of Lemma 3.3 can be rewritten for the entropy numbers as

follows

=m(Bn; X )<<{- n�m MX ,
MXe&m�n,

m�n
m>n.

We now estimate MX for a special Banach space X. Let E be a subset
of Zd, of cardinality |E |. Let X E

q be the Banach space of trigonometric
polynomials with real coefficients

t(E; x)= :
k # E

cke2?i(k, x)

endowed with the usual norm of the space Lq(Qd ). We denote by deg E
the largest degree of exponentials e2?i(k, x), k # E, and deg e2?i(k, x)=
|k1 |+ } } } +|kd |.

120 E. S. BELINSKY



File: DISTL2 315708 . By:CV . Date:31:03:98 . Time:08:51 LOP8M. V8.B. Page 01:01
Codes: 2365 Signs: 1033 . Length: 45 pic 0 pts, 190 mm

Lemma 3.4.

ME
q #MX q

E<<{- q,
- log deg E,

2<q<�
q=�.

Proof. Let q<�. By definition

ME
q =|

S |E |&1 " :
k # E

cke2?i(k, x)"q
d_.

Let us consider the integral

| |M E
q (=)|q d==| _|S |E |&1 " :

k # E

=kcke2?i(k, x)"q
d_&

q

d=

�||
S |E|&1 " :

k # E

=kcke2?i(k, x)"
q

q

d_ d=,

where =k are independent random variables taking only two values, \1,
with equal probability. By the Khinchin inequality (see, for example, [31,
Chap. 5]) the last integral is estimated by Cqq�2. Hence there exists a
distribution of signs =� such that

M E
q (=� )<<- q.

But since the measure _ is rotation invariant, M E
q (=� )=M E

q .
The case q=� is derived from the case q<� and the inequality of

different metrics [17]

&t(E, x)&��(deg E)d�q &t(E, x)&q .

It is sufficient to take q=d log(deg E ). K

We demonstrate all the details in the course of the proof of Theorem 1.1.
For the other theorems we concentrate only on necessary alterations.

Proof of Theorem 1.1. We begin with the case p=2. Let s # Zd
+ and

\(s)=[k # Zd : 2sj&1�|kj |<2sj, j=1, ..., d].

Let us denote

$s(x)= :
k # \(s)

cke2?i(k, x), and $s( f ; x)= :
k # \(s)

f� (k) e2?i(k, x).
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Let Bp( j ) be the subset of trigonometric polynomials �r1 j�(s, r)<r1( j+1) $s(x)
such that

" :
r1 j�(s, r)<r1( j+1)

$s(x)"p
�1.

We take m=2ll &&1. Since for each f # W r
2

" :
r1 j�(s, r)<r1 ( j+1)

$s( f ; x)&
2

<<2& jr1.

(see [18], also [25]), we have

=m(W r
2 ; L�)<< :

l

j=1

2& jr1 =kj
(B2( j ); L�)+ :

�

j=l+1

2&jr1=kj
(B2( j); L�),

where the kj is chosen so that � kj�m.
For 1� j<l we take kj=2 j�2+l�2j &&1 and use Lemmas 3.3 and 3.4. We

obtain

:
l&1

j=1

2& jr1 j 1�2 exp 2(l& j )�2<<l1�22&lr1.

For the second sum we take only �#l
l where # is a parameter for which the

``tail'' is �l1�22&lr1. Let us take kj=[2l(r1+1�2)& j (r1&1�2) l&&1]&1. Now it
suffices to take # so that all kj>0. By Lemmas 3.3 and 3.4

l&(&&1)�22&l�2(r1+1�2) :
#l

j=l

j&�22&j�2(r1&1�2)<<l1�22&lr1.

The estimate is proved.
Let 1< p<2. Suppose for a moment that Theorem 1.4 is proved. We

need a particular case of the multiplication property of entropy numbers
(for the complete result see [19, Sect. 12.1.5]). Let us consider the operator
Ur : Lp � L2 defined by the convolution f � f V Kr . Then the conjugate
operator U r* takes L2 into Lp$ .

Lemma 3.5. If r1>1�p, r$1>1�p&1�2, and r1">1�2, then

=2m&1(Ur : Lp � L�)�=m(Ur$ : Lp � L2) =m(Ur" : L2 � L�),

where r=r$+r".

Using the estimate for entropy numbers obtained for the case p=2 and
Theorem 1.4 (assumed to be true) complete the proof of Theorem 1.1. K
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Proof of Theorem 1.4. We prove the theorem in a few steps.

Step 1. By Ho� lder's inequality

& f & g&q�& f & g&1&%
2 & f & g&%

t �2 & f & g&%
t ,

for every t>q, and 1�q=(1&%)�2+%�t. Hence

=m(Bn, Lq)�2(=m(Bn, Lt))
%�2 \�n

m
M E

t +
%

.

It is easy to see that t can be chosen so that %�2>1�2&1�q is close to
1�2&1�q. Now the method used in the proof of Theorem 1.1, with
Lemma 3.3 replaced by this inequality, proves Theorem 1.4 for p=2, p<
q<�, r1>1�2&1�q.

Step 2. Let 2< p<q<�. For every *>0 a trigonometric polynomial
T(x) # Bp( j) can be decomposed into the sum of two polynomials T(x)=
T1(x)+T2(x) such that &T1(x)&2<<*1�p&1�2 &T(x)&p and &T2(x)&q<<
*1�p&1�q &T(x)&p . To do this we take the *-cut of T(x), i.e., f1(x)=* when
|T(x)|>*, f1=T(x) elsewhere, and f2(x)= f1(x)&T(x). We obtain a
decomposition T(x)= f1+ f2 with the functions f1 and f2 having the
needed properties. Then we apply the operator of ``step-hyperbolic'' partial
sums to both parts of this equality (see, for example, [26]). By the
Marcinkiewicz multiplier theorem this operator is bounded in Lp ,
1< p<� and we have the desired decomposition (see [3], for details).

Now the interpolation property of entropy numbers (cf. [19, Sect. 12.1.12])
is applicable, and we get the following inequality

=m(Bp( j ); Lq)�(=m(B2( j ); Lq))1&% =1(Bq( j ); Lq)%�2(=m(B2( j ); Lq))1&%.

Again use the method used for the proof Theorem 1.1 with Lemma 3.3
replaced by this inequality.

Step 3. Let us consider the case 1< p<q�2, r1>1�p&1�q. The
Marcinkiewicz multiplier theorem yields that Bp$( j ) with 1�p+1�p$=1
can be considered as the ball in the dual space of Bp( j ). Hence we can use
Lemma 3.1 and as above we again use the method of Theorem 1.1 with
Lemma 3.2, then proceed as in Steps 1 and 2.

Step 4. If 1< p<2<q<�, then the estimate follows from the previous
estimates and the transitivity property of entropy numbers (Lemma 3.5).

Theorem 1.4 is proved. K

Remark 3.6. There exists another way to transfer estimates for the
entropy numbers of a compact operator to the entropy numbers of its
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conjugate. To show this, we need the following result (it is a partial case
of [30]; the method is not universal since the duality conjecture for
entropy numbers has not been yet proved in full generality).

Lemma 3.7. Let Ur be the operator defined in Lemma 3.5. Then

=2m&1(Ur : Lp � L2)�[=m(Ur : Lp � L2)]1�2 [=m(U r*: L2 � Lp$)]1�2.

Now we have

sup
1�k�m

(k&1 log&&1 k)&r1 =k(W r
p ; L2)

� sup
1�k�m�2

(k&1 log&&1 k)&r1 =2k&1(W r
p ; L2)

<<( sup
1�k�m

(k&1 log&&1 k)&r1 =k(W r
p ; L2))1�2

_( sup
1�k�m

(k&1 log&&1 k)&r1 =k(W r
2 ; Lp$))1�2.

Comparing the left-hand and right-hand side estimates and using the
inequality from Step 1 we obtain the estimate of Theorem 1.4 for 1< p<2,
q=2, r1>1�p&1�2.

Proof of Theorem 1.5. The proof of this theorem repeats the proof of
Theorem 1.4. The only alterations are the following estimates of polyno-
mials of Bp( f; j ) (see [11], for p=2, or [26], for 1< p<�):

For each f # H r
p

" :
r1 j�(s, r)<r1( j+1)

$s( f ; x)"2

<<2& jr1 j (&&1)�2.

Proof of Theorem 1.2. The proof for the case p=2, r1>1�2 is the same
as the proof for the space W r

2 . If 1< p<2 we can use Lemma 3.5 and
Theorem 1.4 taking into account that the operator of convolution with the
kernel Kr$ takes H r

p into H r+r$
p (see [26]).

Remark 3.8. With the general result of [16] estimates of entropy num-
bers can also be derived from the corresponding estimates of widths (see,
for example, [6, 7, 8, 26, 27]).

APPENDIX

Here we answer a question of Kuelbs and Li [15]. They considered the
unit ball K: , with 0<:<2, defined as

K:={ f (t)=T: g(t): 0�t�1, |
R

g2(u) du�1= ,
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where

T: g(t)=|
t

0
(t&u)(:&1)�2 g(u) du

+|
0

&�
((t&u)(:&1)�2&(&u)(:&1)�2) g(u) du.

They derived the order of =-entropy from the estimates of the Gaussian
measure: H=(K: , C )#=&2�(:+1) and asked whether a direct proof exists.
Here we sketch a direct proof.

A standard argument (see, for example, [22, Sect. 14]) gives the embedding
K:/H (:+1)�2

2 . Therefore [9]

H=(K: , C )<<=&2�(:+1).

To prove the estimate from below it suffices to build in K: a set of
=-distinguishable points. Let us take the function

/k(x)={
1, x # \2k&1

2n+1
,

2k
2n+1+

&1, x # \ 2k
2n+1

,
2k+1
2n+1+

0, elsewhere

and consider in K: the set of functions [T: g=(x)] where g=(t)=�n
k=1 =k/k(x),

=k # [+1, &1], are all possible sums with ==+1 or &1. Since the number
of such functions is 2n and the distance between each two of them >>n&2�(:+1)

we get the estimate from below

H=(K: , C )>>=&2�(:+1). K
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